I'd like to thank Nicolas Mohnblatt for brainstorming, discussing and reviewing this article, and for his many shared insights, and to Srinath Setty for providing the inspiration for this work and feedback.
This article wouldn't have been possible without them. All mistakes are my own.
This article was originally written on a SageMath Jupyter notebook, which can be found here .
Folding CCS relations in HyperNova
In part 1 , we managed to verify the validity of a CCS relation using the sum-check. The goal was to get ourselves familiar with the mechanics of the protocol. In particular, we saw that two sum-checks are run for such a CCS relation, and how the two sum-checks relate.
Outer sum-check : 0 = G ( x ) 0 = G(x)0 = G ( x ) for all x ∈ { 0 , 1 } 2 x \in \{0,1\}^2x ∈ { 0 , 1 } 2 .
(Batched) inner sum-checks : v j = ∑ y ∈ { 0 , 1 } 3 M ~ j ( r , y ) ⋅ z ~ ( y ) v_j = \sum_{y\in \{0,1\}^{3}} \widetilde{M}_j(r,y) \cdot \widetilde{z}(y)v j = ∑ y ∈ { 0 , 1 } 3 M j ( r , y ) ⋅ z ( y )
The goal of this post is to go beyond a single CCS instance to a folding of many as is done in the HyperNova paper. One of the main insights of folding in HyperNova is that we can accumulate or delay the computation of the inner sum-checks.
Linearised Committed CCS (LCCCS)
Recall that a relation R \mathcal{R}R in CCS is composed by:
a structure s : = ( [ M 1 , . . . , M t ] , [ S 1 , . . . , S q ] , [ c 1 , . . . , c q ] ) s := ([M_1, ..., M_t], [S_1,...,S_q], [c_1, ..., c_q])s := ([ M 1 , ... , M t ] , [ S 1 , ... , S q ] , [ c 1 , ... , c q ]) , plus some other bound parameters such as the number of rows m mm and columns n nn of the matrices M i M_iM i .
an instance , which consists of public inputs × ∈ F l \times \in \mathbb{F}^l× ∈ F l and private inputs ω ∈ F m \omega \in \mathbb{F}^mω ∈ F m .
that satisfies that ( s , × , ω ) ∈ R C C S (s, \times, \omega) \in \mathcal{R}_{CCS}( s , × , ω ) ∈ R CCS if and only if for all x ∈ { 0 , 1 } log m x \in \{0,1\}^{\log m}x ∈ { 0 , 1 } l o g m
∑ i = 1 q c i ⋅ ( ∏ j ∈ S i ( ∑ y ∈ { 0 , 1 } log m M ~ j ( x , y ) ⋅ z ~ ( y ) ) ) = 0 \begin{aligned}
& \sum_{i=1}^q c_i \cdot (\prod_{j\in S_i} (\sum_{y\in \{0,1\}^{\log m}} \widetilde{M}_j(x,y) \cdot \widetilde{z}(y))) = 0
\end{aligned} i = 1 ∑ q c i ⋅ ( j ∈ S i ∏ ( y ∈ { 0 , 1 } l o g m ∑ M j ( x , y ) ⋅ z ( y ))) = 0
where z ~ ( y ) = ( ω , × , 1 ) ~ ( y ) \widetilde{z}(y)=\widetilde{(\omega, \times, 1)}(y)z ( y ) = ( ω , × , 1 ) ( y )
In HyperNova, CCS relations are modified for folding:
A Linearised CCS relation R L C C S \mathcal{R}_{LCCS}R L CCS contains only inner linear sum-checks. Concretely,
( s , ( u , x , r , { v 1 , . . . , v t } ) , w ~ ) ∈ R L C C S ⟺ v i = ∑ y ∈ { 0 , 1 } M i ~ ( r , y ) ⋅ z ~ ( y ) \begin{aligned}
(s, (u, x, r, \{v_1,...,v_t\}), \widetilde{w}) \in \mathcal{R}_{LCCS}
\iff v_i = \sum_{y \in \{ 0,1\}} \widetilde{M_i}(r, y) \cdot \widetilde{z}(y)
\end{aligned}( s , ( u , x , r , { v 1 , ... , v t }) , w ) ∈ R L CCS ⟺ v i = y ∈ { 0 , 1 } ∑ M i ( r , y ) ⋅ z ( y ) .
One can think of an LCCS instance as an object that encapsulates the inner sum-checks that are left after computing the outer sum-check of a CCS instance.
A Committed CCS relation ( C , s , × , ω ) ∈ R C C C S (C, s, \times, \omega) \in \mathcal{R}_{CCCS}( C , s , × , ω ) ∈ R CCCS is a CCS instance where a commitment to the witness ω \omegaω is also presented in the instance.
A Linearised Committed CCS instance ( C , s , ( u , x , r , { v 1 , . . . , v t } ) , w ~ ) ∈ R L C C C S (C, s, (u, x, r, \{v_1,...,v_t\}), \widetilde{w}) \in \mathcal{R}_{LCCCS}( C , s , ( u , x , r , { v 1 , ... , v t }) , w ) ∈ R L CCCS is a linearised instance with a commitment to the witness ω \omegaω of the instance.
Multi-folding for CCS construction
Folding in HyperNova takes an accumulated relation R 1 ∈ R L C C C S R_1 \in \mathcal{R}_{LCCCS}R 1 ∈ R L CCCS and a new, incoming relation R 2 ∈ R C C C S R_2 \in \mathcal{R}_{CCCS}R 2 ∈ R CCCS , and returns a new accumulated relation R 3 ∈ R L C C C S R_3 \in \mathcal{R}_{LCCCS}R 3 ∈ R L CCCS .
f : R L C C C S × R C C C S → R L C C C S ( R 1 , R 2 ) ↦ R 3 \begin{aligned}
f : \mathcal{R}_{LCCCS} \times \mathcal{R}_{CCCS} &\to \mathcal{R}_{LCCCS} \\
(R_1, R_2) &\mapsto R_3
\end{aligned}f : R L CCCS × R CCCS ( R 1 , R 2 ) → R L CCCS ↦ R 3
More precisely, a folding step will require us to prove the sums in:
R 1 ∈ R L C C C S R_1 \in \mathcal{R}_{LCCCS}R 1 ∈ R L CCCS : v i = ∑ y ∈ { 0 , 1 } M i ~ ( r , y ) ⋅ z ~ ( y ) v_i = \sum_{y \in \{ 0,1\}} \widetilde{M_i}(r, y) \cdot \widetilde{z}(y)v i = ∑ y ∈ { 0 , 1 } M i ( r , y ) ⋅ z ( y )
R 2 ∈ R C C C S R_2 \in \mathcal{R}_{CCCS}R 2 ∈ R CCCS : ∑ i = 1 q c i ⋅ ( ∏ j ∈ S i ( ∑ y ∈ { 0 , 1 } log m M ~ j ( x , y ) ⋅ z ~ ( y ) ) ) = 0 \sum_{i=1}^q c_i \cdot (\prod_{j\in S_i} (\sum_{y\in \{0,1\}^{\log m}} \widetilde{M}_j(x,y) \cdot \widetilde{z}(y))) = 0∑ i = 1 q c i ⋅ ( ∏ j ∈ S i ( ∑ y ∈ { 0 , 1 } l o g m M j ( x , y ) ⋅ z ( y ))) = 0
while delaying some of the sum-checks for later steps, which are encoded in R 3 ∈ R L C C C S R_3 \in \mathcal{R}_{LCCCS}R 3 ∈ R L CCCS .
Folding Fibonacci
To illustrate the workings of folding in HyperNova, we'll perform two iterations of our Fibonacci example:
// i-th iteration
fibonacci(x_2, x_1, y_2, y_1) {
x = x_1 + x_2 // Fibonacci
y = y_1 * y_2 // Multiplicative Fibonacci
t = x * y // Fibonacci x (Multiplicative Fibonacci)
(x, y, t)
}
Recall that a Fibonacci iteration arithmetises in CCS as follows:
1 ⏞ c 1 ⋅ [ 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ⏞ M 1 [ x 2 x 1 x y 2 y 1 y t 1 ] ⏞ z ∘ [ 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ] ⏞ M 2 [ x 2 x 1 x y 2 y 1 y t 1 ] ⏞ z + ( − 1 ) ⏞ c 1 ⋅ [ 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ] ⏞ M 3 [ x 2 x 1 x y 2 y 1 y t 1 ] ⏞ z = [ 0 0 0 0 0 0 0 0 ] ⏞ 0 ⃗ \begin{aligned}
& \overbrace{1}^{c_1} \cdot \overbrace{\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }^{M_1}
\overbrace{\begin{bmatrix} x_2 \\ x_1 \\ x \\ y_2 \\ y_1 \\ y \\ t \\ 1 \end{bmatrix}}^z \circ
\overbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}}^{M_2}
\overbrace{\begin{bmatrix} x_2 \\ x_1 \\ x \\ y_2 \\ y_1 \\ y \\ t \\ 1 \end{bmatrix}}^z \\
+& \overbrace{(-1)}^{c_1} \cdot \overbrace{\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}}^{M_3}
\overbrace{\begin{bmatrix} x_2 \\ x_1 \\ x \\ y_2 \\ y_1 \\ y \\ t \\ 1 \end{bmatrix}}^z
= \overbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}^{\vec{0}}
\end{aligned}+ 1 c 1 ⋅ 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 1 x 2 x 1 x y 2 y 1 y t 1 z ∘ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 M 2 x 2 x 1 x y 2 y 1 y t 1 z ( − 1 ) c 1 ⋅ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 M 3 x 2 x 1 x y 2 y 1 y t 1 z = 0 0 0 0 0 0 0 0 0
Multi-folding refers to the property that instances of different structures can be folded together. However, the structure s i s_is i for each instance in our fibonacci example will be the same. That is, s = s 1 = s 2 = ( [ M ~ 1 , M ~ 2 , M ~ 3 ] , [ S 1 , S 2 ] , [ c 1 , c 2 ] ) s = s_1 = s_2 = ([\widetilde{M}_1, \widetilde{M}_2, \widetilde{M}_3], [S_1, S_2], [c_1, c_2])s = s 1 = s 2 = ([ M 1 , M 2 , M 3 ] , [ S 1 , S 2 ] , [ c 1 , c 2 ]) , where S 1 = { 1 , 2 } S_1 = \{1, 2\}S 1 = { 1 , 2 } , S 2 = { 3 } S_2 = \{ 3 \}S 2 = { 3 } , c 1 = 1 c_1 = 1c 1 = 1 , c 2 = − 1 c_2 = -1c 2 = − 1 .
# Necessary boilerplate from our last post
k = GF(101)
R = PolynomialRing(k, 10, "x1, x2, y1, y2, y3, x11, x22, y11, y22, y33")
x1, x2, y1, y2, y3, x11, x22, y11, y22, y33 = R.gens()
eqx = ((1 - x1)*(1 - x11) + x1*x11) * ((1 - x2)*(1 - x22) + x2*x22)
eqy = ((1 - y1)*(1 - y11) + y1*y11) * ((1 - y2)*(1 - y22) + y2*y22) * ((1 - y3)*(1 - y33) + y3*y33)
M1 = Matrix(k, [
[1,1,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0]
])
M2 = Matrix(k, [
[0,0,0,0,0,0,0,1],
[0,0,0,1,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0]
])
M3 = Matrix(k, [
[0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0]
])
Recall also that the multilinear extensions M i ~ \widetilde{M_i}M i of M i M_iM i and z ~ \widetilde{z}z of z zz are defined as
M i ~ ( X , Y ) : = ∑ x ∈ { 0 , 1 } s ∑ y ∈ { 0 , 1 } s ′ M i ( x , y ) ⋅ e q ~ ( x , X ) ⋅ e q ~ ( y , Y ) \begin{aligned}
\widetilde{M_i}(X, Y) &:= \sum_{x \in \{0, 1 \}^{s}} \sum_{y \in \{0, 1 \}^{s'}} M_i(x, y) \cdot \widetilde{eq}(x, X) \cdot \widetilde{eq}(y, Y)
\end{aligned}M i ( X , Y ) := x ∈ { 0 , 1 } s ∑ y ∈ { 0 , 1 } s ′ ∑ M i ( x , y ) ⋅ e q ( x , X ) ⋅ e q ( y , Y )
z ~ ( Y ) : = ∑ y ∈ { 0 , 1 } s ′ z ( y ) ⋅ e q ~ ( y , Y ) \widetilde{z}(Y) := \sum_{y \in \{0, 1 \}^{s'}} z(y) \cdot \widetilde{eq}(y, Y)z ( Y ) := ∑ y ∈ { 0 , 1 } s ′ z ( y ) ⋅ e q ( y , Y ) .
And that to apply the sum-check, the CCS relation
1 ⋅ ( M 1 ⋅ z ∘ M 2 ⋅ z ) + ( − 1 ) ⋅ ( M 3 ⋅ z ) = 0 ⃗ 1 \cdot (M_1 \cdot z \circ M_2 \cdot z) + (-1) \cdot (M_3 \cdot z) = \vec{0}1 ⋅ ( M 1 ⋅ z ∘ M 2 ⋅ z ) + ( − 1 ) ⋅ ( M 3 ⋅ z ) = 0
is thus turned into a polynomial equation
G ( ( X 1 , X 2 ) ) : = 1 ⋅ ( ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ ( y ) ⋅ ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ ( y ) ) + ( − 1 ) ⋅ ( ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ ( y ) ) = 0 ⃗ \begin{aligned}
G((X_1, X_2)) := & 1 \cdot (\sum_{y \in \{0, 1 \}^3} \widetilde{M_1}((X_1, X_2), y) \cdot \widetilde{z}(y) \cdot \sum_{y \in \{0, 1 \}^{3}} \widetilde{M_1}((X_1, X_2), y) \cdot \widetilde{z}(y)) \\ + & (-1) \cdot (\sum_{y \in \{0, 1 \}^{3}} \widetilde{M_3}((X_1, X_2), y) \cdot \widetilde{z}(y)) = \vec{0}
\end{aligned}G (( X 1 , X 2 )) := + 1 ⋅ ( y ∈ { 0 , 1 } 3 ∑ M 1 (( X 1 , X 2 ) , y ) ⋅ z ( y ) ⋅ y ∈ { 0 , 1 } 3 ∑ M 1 (( X 1 , X 2 ) , y ) ⋅ z ( y )) ( − 1 ) ⋅ ( y ∈ { 0 , 1 } 3 ∑ M 3 (( X 1 , X 2 ) , y ) ⋅ z ( y )) = 0
# From-binary-to-decimal polynomials
row = x1 + 2*x2
col = y1 + 2*y2 + 4*y3
def Mi_linear(Mi):
return sum([
sum([
sum([
sum([
sum([
Mi[Integer(row(x1=x1, x2=x2))][Integer(col(y1=y1,y2=y2,y3=y3))] * eqx(x1=x1,x2=x2,x11=x11,x22=x22) * eqy(y1=y1, y11=y11, y2=y2, y22=y22, y3=y3, y33=y33)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
for x2 in [0,1]])
for x1 in [0,1]])
def z_linear(zi):
return sum([
sum([
sum([
zi[Integer(col(y1=y1,y2=y2,y3=y3))]* eqy(y1=y1, y11=y11, y2=y2, y22=y22, y3=y3, y33=y33)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
def Mi_z_prod(Mi, zi):
return sum([
sum([
sum([
Mi_linear(Mi)(y11=y1,y22=y2,y33=y3) * z_linear(zi)(y11=y1,y22=y2,y33=y3)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
Iteration 1 (base case)
As we did in our previous post, we provide the initial values x 2 = 0 , x 1 = 1 , y 2 = 2 , y 1 = 3 x_2 = 0, x_1 = 1, y_2=2, y_1=3x 2 = 0 , x 1 = 1 , y 2 = 2 , y 1 = 3 to the Fibonacci step function, which outputs x = 1 , y = 6 , t = 6 x = 1, y=6, t=6x = 1 , y = 6 , t = 6 .
The ingredients for our first iterations are:
Accumulated relation R 1 = ⊥ ∈ R L C C C S R_1 = \bot \in \mathcal{R}_{LCCCS}R 1 = ⊥ ∈ R L CCCS
Incoming relation R 2 = ( s , C 2 , × 2 ) ∈ R C C C S R_2 = (s, C_2, \times_2) \in \mathcal{R}_{CCCS}R 2 = ( s , C 2 , × 2 ) ∈ R CCCS
Accumulated instance z ~ 1 = ⊥ \widetilde{z}_1 = \botz 1 = ⊥
Incoming instance z ~ 2 = ( ω 2 , × 2 , 1 ) ~ \widetilde{z}_2 = \widetilde{(\omega_2, \times_2, 1)}z 2 = ( ω 2 , × 2 , 1 ) , where ω 2 = ( ) \omega_2 = ()ω 2 = ( ) and × 2 = ( 0 , 1 , 1 , 2 , 3 , 6 , 6 ) \times_2 = (0,1,1,2,3,6,6)× 2 = ( 0 , 1 , 1 , 2 , 3 , 6 , 6 ) .
public_x2 = [0,1,1,2,3,6,6]
private_w2 = []
z2 = vector(k, private_w2 + public_x2 + [1])
z2
(0, 1, 1, 2, 3, 6, 6, 1)
Checking R 1 ∈ R L C C C S R_1 \in \mathcal{R}_{LCCCS}R 1 ∈ R L CCCS
In this first iteration or base case, our accumulated instance R 1 R_1R 1 is empty, so there is no sum-check to run.
Checking for R 2 ∈ R C C C S R_2 \in \mathcal{R}_{CCCS}R 2 ∈ R CCCS
The prover wants to prove that G ( ( x 1 , x 2 ) ) = 0 G((x_1, x_2)) = 0G (( x 1 , x 2 )) = 0 for all x 1 , x 2 ∈ { 0 , 1 } x_1, x_2 \in \{0,1\}x 1 , x 2 ∈ { 0 , 1 } using the sum-check.
That is G ( ( 0 , 0 ) ) = G ( ( 0 , 1 ) ) = G ( ( 1 , 0 ) ) = G ( ( 1 , 1 ) ) = 0 G((0,0))= G((0,1))= G((1,0))= G((1,1))=0G (( 0 , 0 )) = G (( 0 , 1 )) = G (( 1 , 0 )) = G (( 1 , 1 )) = 0 , where
G ( ( X 1 , X 2 ) ) : = ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ( y ) ⋅ ∑ y ∈ { 0 , 1 } 3 M 2 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ( y ) − ( ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ( y ) ) = 0 \begin{aligned}
G((X_1, X_2)) := & \sum_{y \in \{0, 1 \}^3} \widetilde{M_1}((X_1, X_2), y) \cdot \widetilde{z}_2(y) \cdot \sum_{y \in \{0, 1 \}^{3}} \widetilde{M_2}((X_1, X_2), y) \cdot \widetilde{z}_2(y) \\
-& (\sum_{y \in \{0, 1 \}^{3}} \widetilde{M_3}((X_1, X_2), y) \cdot \widetilde{z}_2(y)) = 0
\end{aligned}G (( X 1 , X 2 )) := − y ∈ { 0 , 1 } 3 ∑ M 1 (( X 1 , X 2 ) , y ) ⋅ z 2 ( y ) ⋅ y ∈ { 0 , 1 } 3 ∑ M 2 (( X 1 , X 2 ) , y ) ⋅ z 2 ( y ) ( y ∈ { 0 , 1 } 3 ∑ M 3 (( X 1 , X 2 ) , y ) ⋅ z 2 ( y )) = 0
G = Mi_z_prod(M1, z2) * Mi_z_prod(M2, z2) - Mi_z_prod(M3, z2)
G
21*x11^2*x22^2 - 17*x11^2*x22 - 15*x11*x22^2 + 2*x11^2 + 11*x11*x22 - 2*x11
As we did in the previous post, we compute the multilinear extension of G ( ( X 1 , X 2 ) ) G((X_1,X_2))G (( X 1 , X 2 )) , h ( ( X 1 , X 2 ) ) = ∑ x 1 , x 2 ∈ { 0 , 1 } e q ~ ( ( X 1 , X 2 ) , ( x 1 , x 2 ) ) ⋅ G ( ( x 1 , x 2 ) ) h((X_1,X_2)) = \sum_{x_1,x_2 \in \{0,1\}} \widetilde{eq}((X_1,X_2),(x_1,x_2)) \cdot G((x_1, x_2))h (( X 1 , X 2 )) = ∑ x 1 , x 2 ∈ { 0 , 1 } e q (( X 1 , X 2 ) , ( x 1 , x 2 )) ⋅ G (( x 1 , x 2 )) .
Checking that h hh is the zero polynomial implies with high probability that for all x ∈ { 0 , 1 } 2 x \in \{ 0,1\}^2x ∈ { 0 , 1 } 2 , G ( x ) = 0 G(x) = 0G ( x ) = 0 .
h = sum([
sum([
G(x11=x11, x22=x22) * eqx(x11=x11, x22=x22)
for x22 in [0,1]])
for x11 in [0,1]])
h
0
To check that h = 0 h = 0h = 0 , we can apply the Swartz-Zippel lemma and evaluate h hh at a random point β : = ( β 1 , β 2 ) \beta := (\beta_1, \beta_2)β := ( β 1 , β 2 ) .
Thus, the verifier samples a random challenge β : = ( β 1 , β 2 ) \beta := (\beta_1, \beta_2)β := ( β 1 , β 2 ) .
beta1 = k.random_element()
beta2 = k.random_element()
(beta1, beta2)
(91, 30)
The prover computes h ( ( β 1 , β 2 ) ) h((\beta_1,\beta_2))h (( β 1 , β 2 )) and sends it to the verifier. The goal of the verifier is to check that h ( ( β 1 , β 2 ) ) h((\beta_1,\beta_2))h (( β 1 , β 2 )) is indeed this sum:
h ( ( β 1 , β 2 ) ) = ∑ x 1 , x 2 ∈ { 0 , 1 } e q ~ ( ( β 1 , β 2 ) , ( x 1 , x 2 ) ) ⋅ G ( ( x 1 , x 2 ) ) h((\beta_1,\beta_2)) = \sum_{x_1,x_2 \in \{0,1\}} \widetilde{eq}((\beta_1,\beta_2),(x_1,x_2)) \cdot G((x_1, x_2))h (( β 1 , β 2 )) = ∑ x 1 , x 2 ∈ { 0 , 1 } e q (( β 1 , β 2 ) , ( x 1 , x 2 )) ⋅ G (( x 1 , x 2 ))
Equivalently, it is checking that ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } Q ( x 1 , x 2 ) = 0 \sum_{x_1 \in \{0,1\}}\sum_{x_2 \in \{0,1\}} Q(x_1, x_2) = 0∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } Q ( x 1 , x 2 ) = 0 where
Q ( X 1 , X 2 ) : = G ( ( X 1 , X 2 ) ) ⋅ e q ~ ( ( β 1 , β 2 ) , ( X 1 , X 2 ) ) Q(X_1, X_2) := G((X_1, X_2)) \cdot \widetilde{eq}((\beta_1, \beta_2), (X_1, X_2))Q ( X 1 , X 2 ) := G (( X 1 , X 2 )) ⋅ e q (( β 1 , β 2 ) , ( X 1 , X 2 ))
Q = G * eqx(x1=beta1,x2=beta2)
Q
39*x11^3*x22^3 + 17*x11^3*x22^2 - 5*x11^2*x22^3 - 4*x11^3*x22 + 5*x11^2*x22^2 - 39*x11*x22^3 + 6*x11^3 + 41*x11^2*x22 + 6*x11*x22^2 - 38*x11^2 + 41*x11*x22 + 32*x11
sum([
sum([ Q(x11=x1, x22=x2) for x2 in [0,1]])
for x1 in [0,1]]) == 0
True
Round 1
The prover P PP sends the verifier V VV a univariate polynomial s 1 ( X 1 ) s_1(X_1)s 1 ( X 1 ) claiming to be equal to Q 1 ( X 1 ) : = ∑ x 2 ∈ { 0 , 1 } Q ( X 1 , x 2 ) Q_1(X_1) := \sum_{x_2 \in \{0,1\}} Q(X_1, x_2)Q 1 ( X 1 ) := ∑ x 2 ∈ { 0 , 1 } Q ( X 1 , x 2 ) . That is, we keep the first variable unbound while summing up the values over the boolean hypercube.
Q1 = sum([ Q(x22=x2) for x2 in [0,1]])
s1 = Q1
s1
-37*x11^3 - 35*x11^2 - 29*x11
The verifier first checks that s 1 ( 0 ) + s 1 ( 1 ) s_1(0) + s_1(1)s 1 ( 0 ) + s 1 ( 1 ) matches the expected result, i.e. s 1 ( 0 ) + s 1 ( 1 ) = 0 s_1(0) + s_1(1) = 0s 1 ( 0 ) + s 1 ( 1 ) = 0
s1(x11=0) + s1(x11=1) == 0
True
The verifier checks s 1 = Q 1 s_1 = Q_1s 1 = Q 1 by checking that Q 1 Q_1Q 1 and s 1 s_1s 1 agree at a random point r 1 r_1r 1 (Schwartz-Zippel lemma)
r1 = k.random_element()
r1
95
The verifier can compute directly s 1 ( r 1 ) s_1(r_1)s 1 ( r 1 ) but doesn't know what Q 1 Q_1Q 1 is, so the check s 1 = Q 1 s_1 = Q_1s 1 = Q 1 must be done recursively.
Round 2 (final)
The new claim is that s 1 ( r 1 ) : = ∑ x 2 ∈ { 0 , 1 } Q ( r 1 , x 2 ) s_1(r_1) := \sum_{x_2 \in \{0,1\}} Q(r_1, x_2)s 1 ( r 1 ) := ∑ x 2 ∈ { 0 , 1 } Q ( r 1 , x 2 )
The prover sends the verifier a univariate s 2 ( X 2 ) s_2(X_2)s 2 ( X 2 ) which he claims to be equal to Q 2 ( X 2 ) : = Q ( r 1 , X 2 ) Q_2(X_2) := Q(r_1, X_2)Q 2 ( X 2 ) := Q ( r 1 , X 2 ) .
Q2 = Q(x11=r1)
s2 = Q2
s2
13*x22^3 + 7*x22^2 - 27*x22 - 28
The verifier first checks that s 1 ( r 1 ) s_1(r_1)s 1 ( r 1 ) is indeed s 2 ( 0 ) + s 2 ( 1 ) s_2(0) + s_2(1)s 2 ( 0 ) + s 2 ( 1 )
s2(x22=0) + s2(x22=1) == s1(x11=r1)
True
The verifier sends a random challenge r 2 r_2r 2 to check that s 2 ( r 2 ) = Q 2 ( r 2 ) s_2(r_2) = Q_2(r_2)s 2 ( r 2 ) = Q 2 ( r 2 ) .
r2 = k.random_element()
r2
70
There is no more need for recursion, since the verifier may now evaluate Q ( r 1 , r 2 ) = Q 2 ( r 2 ) Q(r_1, r_2) = Q_2(r_2)Q ( r 1 , r 2 ) = Q 2 ( r 2 ) .
However, to compute Q 2 ( r 2 ) Q_2(r_2)Q 2 ( r 2 ) the verifier must know the value of the sums
v i = ∑ y 1 ∈ { 0 , 1 } ∑ y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } M i ~ ( ( r 1 , r 2 ) , ( y 1 , y 2 , y 3 ) ) ⋅ z ~ 2 ( ( y 1 , y 2 , y 3 ) ) \begin{aligned}
v_i &= \sum_{y_1 \in \{0, 1 \}} \sum_{y_2 \in \{0, 1 \}} \sum_{y_3 \in \{0, 1 \}} \widetilde{M_i}((r_1, r_2), (y_1, y_2, y_3)) \cdot \widetilde{z}_2((y_1, y_2, y_3)) \\
\end{aligned}v i = y 1 ∈ { 0 , 1 } ∑ y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } ∑ M i (( r 1 , r 2 ) , ( y 1 , y 2 , y 3 )) ⋅ z 2 (( y 1 , y 2 , y 3 ))
To assist the verifier in this computation, the prover computes
v i = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 , r 2 ) , y ) ⋅ z ~ 2 ( y ) v_i = \sum_{y \in \{0, 1 \}^3} \widetilde{M_i}((r_1, r_2), y) \cdot \widetilde{z}_2(y)v i = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 , r 2 ) , y ) ⋅ z 2 ( y ) and sends them to the verifier.
def v_generator(Mi, zi):
return sum([
sum([
sum([
Mi_linear(Mi)(x11=r1, x22= r2, y11=y1,y22=y2,y33=y3) * z_linear(zi)(y11=y1,y22=y2,y33=y3)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
v1 = v_generator(M1, z2)
v2 = v_generator(M2, z2)
v3 = v_generator(M3, z2)
(v1,v2,v3)
(37, -48, -8)
Accumulating sum-checks into R 3 ∈ R L C C C S R_3 \in \mathcal{R}_{LCCCS}R 3 ∈ R L CCCS
Instead of engaging in a sum-check now, they construct R 3 ∈ R L C C C S R_3 \in \mathcal{R}_{LCCCS}R 3 ∈ R L CCCS , which serves as an accumulation of these inner sum-checks:
R 3 = ( s , C 3 , ( u 3 , × 3 , ( r 1 , r 2 ) , { v 1 , v 2 , v 3 } ) ) R_3 = (s, C_3, (u_3, \times_3, (r_1, r_2), \{v_1,v_2,v_3\}))R 3 = ( s , C 3 , ( u 3 , × 3 , ( r 1 , r 2 ) , { v 1 , v 2 , v 3 }))
where C 3 = C 2 C_3 = C_2C 3 = C 2 , u 3 = 1 u_3 = 1u 3 = 1 , × 3 = × 2 \times_3 = \times_2× 3 = × 2 .
So, by checking R 3 R_3R 3 in a future step, the verifier will verify that v 1 , v 2 , v 3 v_1, v_2, v_3v 1 , v 2 , v 3 were computed correctly, thus avoiding running any inner sum-check at this step. Folding for the win!
u3 = 1
public_x3 = public_x2
Iteration 2 (iterative case)
Accumulated relation R 1 ′ = R 3 = ( s , C 3 , ( u 3 , × 3 , ( r 1 , r 2 ) , { v 1 , v 2 , v 3 } ) ) ∈ R L C C C S R'_1 = R_3 = (s, C_3, (u_3, \times_3, (r_1, r_2), \{v_1,v_2,v_3\})) \in \mathcal{R}_{LCCCS}R 1 ′ = R 3 = ( s , C 3 , ( u 3 , × 3 , ( r 1 , r 2 ) , { v 1 , v 2 , v 3 })) ∈ R L CCCS
Incoming relation R 2 ′ = ( s , C 2 ′ , × 2 ′ ) ∈ R C C C S R'_2 = (s, C'_2, \times'_2) \in \mathcal{R}_{CCCS}R 2 ′ = ( s , C 2 ′ , × 2 ′ ) ∈ R CCCS
Accumulated instance z ~ 1 ′ = ( ω 3 , × 3 , u 3 ) ~ \widetilde{z}'_1 = \widetilde{(\omega_3, \times_3, u_3)}z 1 ′ = ( ω 3 , × 3 , u 3 )
Incoming instance z ~ 2 ′ = ( ω 2 ′ , × 2 ′ , 1 ) ~ \widetilde{z}'_2 = \widetilde{(\omega'_2, \times'_2, 1)}z 2 ′ = ( ω 2 ′ , × 2 ′ , 1 ) where ω 2 ′ = ( ) \omega'_2 = ()ω 2 ′ = ( ) and × 2 ′ = ( 1 , 1 , 2 , 3 , 6 , 18 , 36 ) \times'_2 = (1,1,2,3,6,18,36)× 2 ′ = ( 1 , 1 , 2 , 3 , 6 , 18 , 36 ) .
public_xx1 = public_x3
zz1 = vector(k, public_xx1 + [] + [1])
zz1
(0, 1, 1, 2, 3, 6, 6, 1)
public_xx2 = [1,1,2,3,6,18,36]
zz2 = vector(k, public_xx2 + [] + [1])
zz2
(1, 1, 2, 3, 6, 18, 36, 1)
Checking R 1 ′ ∈ R L C C C S R'_1 \in \mathcal{R}_{LCCCS}R 1 ′ ∈ R L CCCS
The verifier wants to check that v i = H i ′ ( ( r 1 , r 2 ) ) v_i = H'_i((r_1, r_2))v i = H i ′ (( r 1 , r 2 )) , where H i ′ ( x ) = ∑ y ∈ { 0 , 1 } 3 M i ~ ( x , y ) ⋅ z ~ 1 ′ ( y ) H'_i(x) = \sum_{y \in \{0, 1 \}^3} \widetilde{M_i}(x, y) \cdot \widetilde{z}'_1(y)H i ′ ( x ) = ∑ y ∈ { 0 , 1 } 3 M i ( x , y ) ⋅ z 1 ′ ( y ) , as the prover claims.
By lemma 6 of the HyperNova paper, since H i H_iH i is a multilinear polynomial in two variables,
H i ( ( X 1 , X 2 ) ) = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } e q ~ ( ( X 1 , X 2 ) , ( x 1 , x 2 ) ) ⋅ H i ( ( x 1 , x 2 ) ) H_i((X_1, X_2)) = \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} \widetilde{eq}((X_1, X_2), (x_1, x_2)) \cdot H_i((x_1, x_2))H i (( X 1 , X 2 )) = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } e q (( X 1 , X 2 ) , ( x 1 , x 2 )) ⋅ H i (( x 1 , x 2 ))
So the prover is tasked to convince the verifier that
v i = H i ( ( r 1 , r 2 ) ) = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i ( ( x 1 , x 2 ) ) v_i = H_i((r_1, r_2)) = \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} L_i((x_1, x_2))v i = H i (( r 1 , r 2 )) = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i (( x 1 , x 2 ))
where
L i ( ( X 1 , X 2 ) ) = e q ~ ( ( r 1 , r 2 ) , ( X 1 , X 2 ) ) ⋅ H i ( ( X 1 , X 2 ) ) L_i((X_1, X_2)) = \widetilde{eq}((r_1, r_2), (X_1, X_2)) \cdot H_i((X_1, X_2))L i (( X 1 , X 2 )) = e q (( r 1 , r 2 ) , ( X 1 , X 2 )) ⋅ H i (( X 1 , X 2 ))
def H_generator(Mi, zi):
return sum([
sum([
sum([
Mi_linear(Mi)(y11=y1,y22=y2,y33=y3) * z_linear(zi)(y11=y1,y22=y2,y33=y3)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
H1 = H_generator(M1, zz1)
H2 = H_generator(M2, zz1)
H3 = H_generator(M3, zz1)
(H1, H2, H3)
(-3*x11*x22 + 2*x11 + 1,
-7*x11*x22 + x11 + 5*x22 + 1,
-11*x11*x22 + 5*x11 + 5*x22 + 1)
L1 = eqx(x1 = r1, x2= r2) * H1
L2 = eqx(x1 = r1, x2= r2) * H2
L3 = eqx(x1 = r1, x2= r2) * H3
(L1, L2, L3)
(-33*x11^2*x22^2 - 43*x11^2*x22 + 10*x11*x22^2 - 24*x11^2 - 28*x11*x22 + 32*x11 - 37*x22 + 22,
24*x11^2*x22^2 - 6*x11^2*x22 + 11*x11*x22^2 - 12*x11^2 - 38*x11*x22 + 17*x22^2 + 10*x11 - 28*x22 + 22,
-20*x11^2*x22^2 - 15*x11^2*x22 - 43*x11*x22^2 + 41*x11^2 + 29*x11*x22 + 17*x22^2 - 3*x11 - 28*x22 + 22)
# Sanity check
H1(x11= r1, x22=r2) == sum([ sum([ L1(x11=x1, x22=x2) for x2 in [0,1]])for x1 in [0,1]])
True
Batching sum-checks in R 1 ′ ∈ R L C C C S R'_1 \in \mathcal{R}_{LCCCS}R 1 ′ ∈ R L CCCS
Instead of engaging in three separate sum-checks, the verifier samples a random element γ ∈ F \gamma \in \mathbb{F}γ ∈ F , and the three sums ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i ( ( x 1 , x 2 ) ) \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} L_i((x_1, x_2))∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i (( x 1 , x 2 )) for i ∈ { 1 , 2 , 3 } i \in \{1,2,3\}i ∈ { 1 , 2 , 3 } are simultaneously checked together by using a random linear combination of L i L_iL i , g 1 ( x ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ L j ( x ) g_1(x) = \sum_{j \in \{1,2,3\}} \gamma^j \cdot L_j(x)g 1 ( x ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ L j ( x )
Checking that
∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } g 1 ( ( x 1 , x 2 ) ) \sum_{j \in \{1,2,3\}} \gamma^j \cdot v_j = \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} g_1((x_1, x_2))∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } g 1 (( x 1 , x 2 ))
implies with high probability that
v i = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i ( ( x 1 , x 2 ) ) v_i = \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} L_i((x_1, x_2))v i = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } L i (( x 1 , x 2 ))
for each i ∈ { 1 , 2 , 3 } i \in \{1,2,3\}i ∈ { 1 , 2 , 3 } .
gamma = k.random_element()
gamma
23
g1 = gamma * L1 + gamma^2 * L2 + gamma^3 * L3
g1
-12*x11^2*x22^2 - 20*x11^2*x22 - 12*x11*x22^2 - 24*x11^2 + 9*x11*x22 - 5*x22^2 + 27*x11 - 11*x22 + 48
sum([
sum([ g1(x11=x1, x22=x2) for x2 in [0,1]])
for x1 in [0,1]]) == gamma * v1 + gamma^2 * v2 + gamma^3 * v3
True
The prover thus sends the sum ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j \sum_{j \in \{1,2,3\}} \gamma^j \cdot v_j∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j to the verifier.
Note that the verifier is delaying these checks for now. They will later be further batched with other sum-checks from R 2 ′ R'_2R 2 ′ .
Checking R 2 ′ ∈ R C C C S R'_2 \in \mathcal{R}_{CCCS}R 2 ′ ∈ R CCCS
As we did for R 2 R_2R 2 , the verifier aims to check that 0 = G ′ ( X ) , X ∈ { 0 , 1 } 2 0 = G'(X), X \in \{ 0,1\}^20 = G ′ ( X ) , X ∈ { 0 , 1 } 2 , where
G ′ ( ( X 1 , X 2 ) ) : = ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ′ ( y ) ⋅ ∑ y ∈ { 0 , 1 } 3 M 2 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ′ ( y ) − ( ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( X 1 , X 2 ) , y ) ⋅ z ~ 2 ′ ( y ) ) = 0 \begin{aligned}
G'((X_1, X_2)) := & \sum_{y \in \{0, 1 \}^3} \widetilde{M_1}((X_1, X_2), y) \cdot \widetilde{z}'_2(y) \cdot \sum_{y \in \{0, 1 \}^{3}} \widetilde{M_2}((X_1, X_2), y) \cdot \widetilde{z}'_2(y) \\ - & (\sum_{y \in \{0, 1 \}^{3}} \widetilde{M_3}((X_1, X_2), y) \cdot \widetilde{z}'_2(y)) = 0
\end{aligned}G ′ (( X 1 , X 2 )) := − y ∈ { 0 , 1 } 3 ∑ M 1 (( X 1 , X 2 ) , y ) ⋅ z 2 ′ ( y ) ⋅ y ∈ { 0 , 1 } 3 ∑ M 2 (( X 1 , X 2 ) , y ) ⋅ z 2 ′ ( y ) ( y ∈ { 0 , 1 } 3 ∑ M 3 (( X 1 , X 2 ) , y ) ⋅ z 2 ′ ( y )) = 0
z ~ 2 ′ = ( ω 2 ′ , × 2 ′ , 1 ) ~ \widetilde{z}'_2 = \widetilde{(\omega'_2, \times'_2, 1)}z 2 ′ = ( ω 2 ′ , × 2 ′ , 1 ) where ω 2 ′ = ( ) \omega'_2 = ()ω 2 ′ = ( ) and × 2 ′ = ( 1 , 1 , 2 , 3 , 6 , 18 , 36 ) \times'_2 = (1,1,2,3,6,18,36)× 2 ′ = ( 1 , 1 , 2 , 3 , 6 , 18 , 36 )
This is equivalent to checking that ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } Q ′ ( x 1 , x 2 ) = 0 \sum_{x_1 \in \{0,1\}}\sum_{x_2 \in \{0,1\}} Q'(x_1, x_2) = 0∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } Q ′ ( x 1 , x 2 ) = 0 where
Q ′ ( X 1 , X 2 ) : = G ′ ( ( X 1 , X 2 ) ) ⋅ e q ~ ( ( β 1 ′ , β 2 ′ ) , ( X 1 , X 2 ) ) Q'(X_1, X_2) := G'((X_1, X_2)) \cdot \widetilde{eq}((\beta'_1, \beta'_2), (X_1, X_2))Q ′ ( X 1 , X 2 ) := G ′ (( X 1 , X 2 )) ⋅ e q (( β 1 ′ , β 2 ′ ) , ( X 1 , X 2 )) , since
∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } G ′ ( ( x 1 , x 2 ) ) ⋅ e q ~ ( ( X 1 , X 2 ) , ( x 1 , x 2 ) ) \sum_{x_1 \in \{0,1\}}\sum_{x_2 \in \{0,1\}} G'((x_1, x_2)) \cdot \widetilde{eq}((X_1, X_2), (x_1, x_2))∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } G ′ (( x 1 , x 2 )) ⋅ e q (( X 1 , X 2 ) , ( x 1 , x 2 )) is a multilinear polynomial, thus uniquely determined, so it is equal to zero. Thus we apply the Schwartz-Zippel lemma by randomly evaluate it to ( β 1 ′ , β 2 ′ ) (\beta'_1, \beta'_2)( β 1 ′ , β 2 ′ ) .
GG = Mi_z_prod(M1, zz2) * Mi_z_prod(M2, zz2) - Mi_z_prod(M3, zz2)
GG
19*x11^2*x22^2 + 9*x11^2*x22 - x11*x22^2 + 8*x11^2 - 27*x11*x22 - 8*x11
The verifier samples a random challenge β ′ : = ( β 1 ′ , β 2 ′ ) \beta' := (\beta'_1, \beta'_2)β ′ := ( β 1 ′ , β 2 ′ ) .
beta11 = k.random_element()
beta22 = k.random_element()
(beta11, beta22)
(26, 39)
QQ = GG * eqx(x1=beta11,x2=beta22)
QQ
-26*x11^3*x22^3 + 36*x11^3*x22^2 - x11^2*x22^3 + 36*x11^3*x22 - 43*x11^2*x22^2 + 6*x11*x22^3 + 50*x11^3 + 21*x11^2*x22 + 20*x11*x22^2 - 25*x11^2 - 49*x11*x22 - 25*x11
Batching sum-checks in R 1 ′ ∈ R L C C C S R'_1 \in \mathcal{R}_{LCCCS}R 1 ′ ∈ R L CCCS and R 2 ′ ∈ R C C C S R'_2 \in \mathcal{R}_{CCCS}R 2 ′ ∈ R CCCS
We now batch:
The remaining batched check on R 1 ′ R'_1R 1 ′ , g 1 ( x ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ L j ( x ) g_1(x) = \sum_{j \in \{1,2,3\}} \gamma^j \cdot L_j(x)g 1 ( x ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ L j ( x )
The new check G ′ ( x ) = 0 G'(x) = 0G ′ ( x ) = 0
Using a random linear combination g ( x ) = g 1 ( x ) + γ 4 Q ′ ( x ) g(x) = g_1(x) + \gamma^4 Q'(x)g ( x ) = g 1 ( x ) + γ 4 Q ′ ( x ) .
As expected, proving the new sum:
∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j + γ 4 ⋅ 0 = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } g ( ( x 1 , x 2 ) ) \sum_{j \in \{1,2,3\}} \gamma^j \cdot v_j + \gamma^4 \cdot 0 = \sum_{x_1 \in \{0, 1 \}} \sum_{x_2 \in \{0, 1 \}} g((x_1, x_2))∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j + γ 4 ⋅ 0 = ∑ x 1 ∈ { 0 , 1 } ∑ x 2 ∈ { 0 , 1 } g (( x 1 , x 2 ))
will in turn prove with high probability the batched checks.
g = g1 + gamma^4 * QQ
g
-28*x11^3*x22^3 + 31*x11^3*x22^2 + 30*x11^2*x22^3 + 31*x11^3*x22 - 35*x11^2*x22^2 + 22*x11*x22^3 + 15*x11^3 - 44*x11^2*x22 - 6*x11*x22^2 + 19*x11^2 - 36*x11*x22 - 5*x22^2 - 31*x11 - 11*x22 + 48
v = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j + γ 4 ⋅ 0 v = \sum_{j \in \{1,2,3\}} \gamma^j \cdot v_j + \gamma^4 \cdot 0v = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ v j + γ 4 ⋅ 0
v = (gamma^1 * v1 + gamma^2 * v2 + gamma^3 * v3) + gamma^4 * 0
v
30
sum([
sum([ g(x11=x1, x22=x2) for x2 in [0,1]])
for x1 in [0,1]]) == v
True
Round 1
Prover sends s 1 ′ s'_1s 1 ′ claiming to be g 1 ′ g'_1g 1 ′
g 1 ′ ( X 1 ) : = ∑ x 2 ∈ { 0 , 1 } g ( X 1 , x 2 ) g'_1(X_1) := \sum_{x_2 \in \{0,1\}} g(X_1, x_2)g 1 ′ ( X 1 ) := ∑ x 2 ∈ { 0 , 1 } g ( X 1 , x 2 )
gg1 = sum([ g(x22=x2) for x2 in [0,1]])
ss1 = gg1
ss1
-37*x11^3 - 11*x11^2 + 19*x11 - 21
The verifier first checks that s 1 ′ ( 0 ) + s 1 ′ ( 1 ) s'_1(0) + s'_1(1)s 1 ′ ( 0 ) + s 1 ′ ( 1 ) matches the expected result, i.e. s 1 ′ ( 0 ) + s 1 ′ ( 1 ) = v s'_1(0) + s'_1(1) = vs 1 ′ ( 0 ) + s 1 ′ ( 1 ) = v
ss1(x11=0) + ss1(x11=1) == v
True
The verifier checks s 1 ′ = g 1 ′ s'_1 = g'_1s 1 ′ = g 1 ′ by checking that g 1 ′ g'_1g 1 ′ and s 1 ′ s'_1s 1 ′ agree at a random point r 1 ′ r'_1r 1 ′ (Schwartz-Zippel lemma)
rr1 = k.random_element()
rr1
64
The verifier can compute directly s 1 ′ ( r 1 ′ ) s'_1(r'_1)s 1 ′ ( r 1 ′ ) but doesn't know what g 1 ′ g'_1g 1 ′ is, so the check s 1 ′ = g 1 ′ s'_1 = g'_1s 1 ′ = g 1 ′ must be done recursively.
Round 2 (final)
The new claim is that s 1 ′ ( r 1 ′ ) : = ∑ x 2 ∈ { 0 , 1 } g ( r 1 ′ , x 2 ) s'_1(r'_1) := \sum_{x_2 \in \{0,1\}} g(r'_1, x_2)s 1 ′ ( r 1 ′ ) := ∑ x 2 ∈ { 0 , 1 } g ( r 1 ′ , x 2 )
The prover sends the verifier a univariate s 2 ′ ( X 2 ) s'_2(X_2)s 2 ′ ( X 2 ) which he claims to be equal to g 2 ′ ( X 2 ) : = g ( r 1 ′ , X 2 ) g'_2(X_2) := g(r'_1, X_2)g 2 ′ ( X 2 ) := g ( r 1 ′ , X 2 ) .
gg2 = g(x11=rr1)
ss2 = gg2
ss2
-x22^3 - 22*x22^2 - 28*x22 - 36
The verifier first checks that s 1 ′ ( r 1 ) s'_1(r_1)s 1 ′ ( r 1 ) is indeed s 2 ′ ( 0 ) + s 2 ′ ( 1 ) s'_2(0) + s'_2(1)s 2 ′ ( 0 ) + s 2 ′ ( 1 )
ss2(x22=0) + ss2(x22=1) == ss1(x11=rr1)
True
The verifier sends a random challenge r 2 ′ r'_2r 2 ′ to check that s 2 ′ ( r 2 ′ ) = g 2 ′ ( r 2 ′ ) s'_2(r'_2) = g'_2(r'_2)s 2 ′ ( r 2 ′ ) = g 2 ′ ( r 2 ′ ) .
rr2 = k.random_element()
rr2
67
There is no more need for recursion, since the verifier may now evaluate g ( r 1 ′ , r 2 ′ ) = g 2 ′ ( r 2 ′ ) g(r'_1, r'_2) = g'_2(r'_2)g ( r 1 ′ , r 2 ′ ) = g 2 ′ ( r 2 ′ ) .
However, to compute g 2 ′ ( r 2 ′ ) g'_2(r'_2)g 2 ′ ( r 2 ′ ) the verifier must know the value of the sums
σ i = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ z ~ 1 ′ ( y ) \sigma_i = \sum_{y \in \{0, 1 \}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot \widetilde{z}'_1(y)σ i = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ z 1 ′ ( y )
θ i = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ z ~ 2 ′ ( y ) \theta_i = \sum_{y \in \{0, 1 \}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot \widetilde{z}'_2(y)θ i = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ z 2 ′ ( y )
for i ∈ { 1 , 2 , 3 } i \in \{1,2,3\}i ∈ { 1 , 2 , 3 } , since
s 2 ′ ( r 2 ′ ) = g 2 ′ ( r 2 ′ ) = g ( ( r 1 ′ , r 2 ′ ) ) = g 1 ( ( r 1 ′ , r 2 ′ ) ) + γ 4 Q ′ ( ( r 1 ′ , r 2 ′ ) ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ L j ( ( r 1 ′ , r 2 ′ ) ) + γ 4 G ′ ( ( r 1 ′ , r 2 ′ ) ) ⋅ e q ~ ( ( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ ) ) = ∑ j ∈ { 1 , 2 , 3 } γ j ⋅ e q ~ ( ( r 1 , r 2 ) , ( r 1 ′ , r 2 ′ ) ) ⋅ H j ( ( r 1 ′ , r 2 ′ ) ) + γ 4 ⋅ ( ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ z ~ 2 ′ ( y ) ⋅ ∑ y ∈ { 0 , 1 } 3 M 2 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ z ~ 2 ′ ( y ) ) − ( ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ z ~ 2 ′ ( y ) ) ) ) ⋅ e q ~ ( ( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ ) ) ) = ( γ ⋅ σ 1 + γ 2 ⋅ σ 2 + γ 3 ⋅ σ 3 ) ⋅ e q ~ ( ( r 1 , r 2 ) , ( r 1 ′ , r 2 ′ ) ) + γ 4 ⋅ ( θ 1 ∗ θ 2 − θ 3 ) ⋅ e q ~ ( ( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ ) ) ) \begin{aligned}
s'_2(r'_2) &= g'_2(r'_2) \\
&= g((r'_1, r'_2)) \\
&= g_1((r'_1, r'_2)) + \gamma^4 Q'((r'_1, r'_2)) \\
&= \sum_{j \in \{1,2,3\}} \gamma^j \cdot L_j((r'_1, r'_2)) + \gamma^4 G'((r'_1, r'_2)) \cdot \widetilde{eq}((\beta'_1, \beta'_2), (r'_1, r'_2)) \\
&= \sum_{j \in \{1,2,3\}} \gamma^j \cdot \widetilde{eq}((r_1, r_2), (r'_1, r'_2)) \cdot H_j((r'_1, r'_2)) \\
&+ \gamma^4 \cdot (\sum_{y \in \{0, 1 \}^3} \widetilde{M_1}((r'_1, r'_2), y) \cdot \widetilde{z}'_2(y) \cdot \sum_{y \in \{0, 1 \}^{3}} \widetilde{M_2}((r'_1, r'_2), y) \cdot \widetilde{z}'_2(y)) \\
&- (\sum_{y \in \{0, 1 \}^{3}} \widetilde{M_3}((r'_1, r'_2), y) \cdot \widetilde{z}'_2(y)))) \cdot \widetilde{eq}((\beta'_1, \beta'_2), (r'_1, r'_2))) \\
&= (\gamma \cdot \sigma_1 + \gamma^2 \cdot \sigma_2 + \gamma^3 \cdot \sigma_3) \cdot \widetilde{eq}((r_1, r_2), (r'_1, r'_2)) \\
&+ \gamma^4 \cdot (\theta_1 * \theta_2 - \theta_3) \cdot \widetilde{eq}((\beta'_1, \beta'_2), (r'_1, r'_2)))
\end{aligned}s 2 ′ ( r 2 ′ ) = g 2 ′ ( r 2 ′ ) = g (( r 1 ′ , r 2 ′ )) = g 1 (( r 1 ′ , r 2 ′ )) + γ 4 Q ′ (( r 1 ′ , r 2 ′ )) = j ∈ { 1 , 2 , 3 } ∑ γ j ⋅ L j (( r 1 ′ , r 2 ′ )) + γ 4 G ′ (( r 1 ′ , r 2 ′ )) ⋅ e q (( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ )) = j ∈ { 1 , 2 , 3 } ∑ γ j ⋅ e q (( r 1 , r 2 ) , ( r 1 ′ , r 2 ′ )) ⋅ H j (( r 1 ′ , r 2 ′ )) + γ 4 ⋅ ( y ∈ { 0 , 1 } 3 ∑ M 1 (( r 1 ′ , r 2 ′ ) , y ) ⋅ z 2 ′ ( y ) ⋅ y ∈ { 0 , 1 } 3 ∑ M 2 (( r 1 ′ , r 2 ′ ) , y ) ⋅ z 2 ′ ( y )) − ( y ∈ { 0 , 1 } 3 ∑ M 3 (( r 1 ′ , r 2 ′ ) , y ) ⋅ z 2 ′ ( y )))) ⋅ e q (( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ ))) = ( γ ⋅ σ 1 + γ 2 ⋅ σ 2 + γ 3 ⋅ σ 3 ) ⋅ e q (( r 1 , r 2 ) , ( r 1 ′ , r 2 ′ )) + γ 4 ⋅ ( θ 1 ∗ θ 2 − θ 3 ) ⋅ e q (( β 1 ′ , β 2 ′ ) , ( r 1 ′ , r 2 ′ )))
To assist the verifier, the prover sends σ i \sigma_iσ i and θ i \theta_iθ i .
def v_generator(Mi, zi):
return sum([
sum([
sum([
Mi_linear(Mi)(x11=rr1, x22= rr2, y11=y1,y22=y2,y33=y3) * z_linear(zi)(y11=y1,y22=y2,y33=y3)
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
sigma1 = v_generator(M1, zz1)
sigma2 = v_generator(M2, zz1)
sigma3 = v_generator(M3, zz1)
theta1 = v_generator(M1, zz2)
theta2 = v_generator(M2, zz2)
theta3 = v_generator(M3, zz2)
(sigma1, sigma2, sigma3), (theta1, theta2, theta3)
((-9, -23, 49), (-18, 45, 3))
g(x11=rr1, x22=rr2) == (gamma * sigma1 + gamma^2 * sigma2 + gamma^3 * sigma3) * eqx(x1=r1, x2=r2, x11=rr1, x22=rr2) + gamma^4 * (theta1 * theta2 - theta3) * eqx(x1=beta11, x2=beta22, x11=rr1, x22=rr2)
True
To avoid doing many sum-checks, the verifier samples a random challenge ρ \rhoρ and reduces the task to checking
σ i + ρ ⋅ θ i = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) \sigma_i + \rho \cdot \theta_i = \sum_{y \in \{0,1\}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y))σ i + ρ ⋅ θ i = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y ))
rho = k.random_element()
rho
45
Accumulating sum-checks into R 3 ′ ∈ R L C C C S R'_3 \in \mathcal{R}_{LCCCS}R 3 ′ ∈ R L CCCS
Instead of engaging in a sum-check now, we construct R 3 ′ ∈ R L C C C S R'_3 \in \mathcal{R}_{LCCCS}R 3 ′ ∈ R L CCCS , which serves as an accumulation of all the remaining inner sum-checks:
R 3 ′ = ( s , C 3 ′ , ( u 3 ′ , × 3 ′ , ( r 1 ′ , r 2 ′ ) , { v 1 ′ , v 2 ′ , v 3 ′ } ) ) R'_3 = (s, C'_3, (u'_3, \times'_3, (r'_1, r'_2), \{v'_1,v'_2,v'_3\}))R 3 ′ = ( s , C 3 ′ , ( u 3 ′ , × 3 ′ , ( r 1 ′ , r 2 ′ ) , { v 1 ′ , v 2 ′ , v 3 ′ }))
where
C 3 ′ = C ′ 1 + ρ ⋅ C 2 C'_3 = C'1 + \rho \cdot C_2C 3 ′ = C ′ 1 + ρ ⋅ C 2
u 3 ′ = 1 + ρ ⋅ 1 u'_3 = 1 + \rho \cdot 1u 3 ′ = 1 + ρ ⋅ 1
× 3 ′ = × 1 ′ + ρ ⋅ × ′ 2 \times'_3 = \times'_1 + \rho \cdot \times'2× 3 ′ = × 1 ′ + ρ ⋅ × ′ 2
v i ′ = σ i + ρ ⋅ θ i v'_i = \sigma_i + \rho \cdot \theta_iv i ′ = σ i + ρ ⋅ θ i
Checking the R 3 ′ R'_3R 3 ′ relation is equivalent to checking
v i ′ = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) v'_i = \sum_{y \in \{0,1\}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y))v i ′ = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y ))
for all i ∈ { 1 , 2 , 3 } i \in \{1,2,3\}i ∈ { 1 , 2 , 3 } .
u3 = 1 + rho
public_xx3 = public_xx1 + rho * public_xx2
vv1 = sigma1 + rho * theta1
vv2 = sigma2 + rho * theta2
vv3 = sigma3 + rho * theta3
Verifying the folded instance
Note that until now, the prover and verifier have only been engaging in outer sum-checks, but haven't engaged in any inner sum-check yet; they have been delaying or accumulating them.
We are left with a linearised CCCS relation R 3 ′ R'_3R 3 ′ . Since our goal was only to compute two iterations, we can finally compute the sum-check on this instance. Had we wanted to run more iterations, we would accumulate these sum-checks further.
v i ′ = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) v'_i = \sum_{y \in \{0,1\}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y))v i ′ = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y ))
where v i ′ = σ i + ρ ⋅ θ i v'_i = \sigma_i + \rho \cdot \theta_iv i ′ = σ i + ρ ⋅ θ i
Note that checking v i ′ v'_iv i ′ implies checking both σ i \sigma_iσ i and θ i \theta_iθ i with high probability.
By batching all v i ′ v'_iv i ′ with a random linear combination, checking
v 1 ′ + α v 2 ′ + α 2 v 3 ′ = ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) + α ⋅ ∑ y ∈ { 0 , 1 } 3 M 2 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) + α 2 ⋅ ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) \begin{aligned}
v'_1 + \alpha v'_2 + \alpha^2 v'_3 &= \sum_{y \in \{0,1\}^3} \widetilde{M_1}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
&+ \alpha \cdot \sum_{y \in \{0,1\}^3} \widetilde{M_2}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
&+ \alpha^2 \cdot \sum_{y \in \{0,1\}^3} \widetilde{M_3}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
\end{aligned}v 1 ′ + α v 2 ′ + α 2 v 3 ′ = y ∈ { 0 , 1 } 3 ∑ M 1 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) + α ⋅ y ∈ { 0 , 1 } 3 ∑ M 2 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) + α 2 ⋅ y ∈ { 0 , 1 } 3 ∑ M 3 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y ))
implies with high probability that
v i ′ = ∑ y ∈ { 0 , 1 } 3 M i ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) v'_i = \sum_{y \in \{0,1\}^3} \widetilde{M_i}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y))v i ′ = ∑ y ∈ { 0 , 1 } 3 M i (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y ))
which in turn implies that σ i \sigma_iσ i and θ i \theta_iθ i for i ∈ { 1 , 2 , 3 } i \in \{1,2,3\}i ∈ { 1 , 2 , 3 } are computed correctly as the prover previously claimed.
Batching sum-checks from R 3 ′ ∈ R L C C C S R'_3 \in \mathcal{R}_{LCCCS}R 3 ′ ∈ R L CCCS
The verifier samples α ∈ F \alpha \in \mathbb{F}α ∈ F randomly to check
v ′ = ∑ y ∈ { 0 , 1 } 3 M 1 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) + α ⋅ ∑ y ∈ { 0 , 1 } 3 M 2 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) + α 2 ⋅ ∑ y ∈ { 0 , 1 } 3 M 3 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) = ∑ y ∈ { 0 , 1 } 3 ( z ~ 1 ′ ( y ) + ρ ⋅ z ~ 2 ′ ( y ) ) ⋅ ( M 1 ~ ( ( r 1 ′ , r 2 ′ ) , y ) + α ⋅ M 2 ~ ( ( r 1 ′ , r 2 ′ ) , y ) + α 2 ⋅ M 3 ~ ( ( r 1 ′ , r 2 ′ ) , y ) ) \begin{aligned}
v' &= \sum_{y \in \{0,1\}^3} \widetilde{M_1}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
&+ \alpha \cdot \sum_{y \in \{0,1\}^3} \widetilde{M_2}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
&+ \alpha^2 \cdot \sum_{y \in \{0,1\}^3} \widetilde{M_3}((r'_1, r'_2), y) \cdot (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \\
&= \sum_{y \in \{0,1\}^3} (\widetilde{z}'_1(y) + \rho \cdot \widetilde{z}'_2(y)) \cdot (\widetilde{M_1}((r'_1, r'_2), y) \\
& \quad \quad \quad \quad + \alpha \cdot \widetilde{M_2}((r'_1, r'_2), y) + \alpha^2 \cdot \widetilde{M_3}((r'_1, r'_2), y))
\end{aligned}v ′ = y ∈ { 0 , 1 } 3 ∑ M 1 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) + α ⋅ y ∈ { 0 , 1 } 3 ∑ M 2 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) + α 2 ⋅ y ∈ { 0 , 1 } 3 ∑ M 3 (( r 1 ′ , r 2 ′ ) , y ) ⋅ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) = y ∈ { 0 , 1 } 3 ∑ ( z 1 ′ ( y ) + ρ ⋅ z 2 ′ ( y )) ⋅ ( M 1 (( r 1 ′ , r 2 ′ ) , y ) + α ⋅ M 2 (( r 1 ′ , r 2 ′ ) , y ) + α 2 ⋅ M 3 (( r 1 ′ , r 2 ′ ) , y ))
alpha = k.random_element()
alpha
81
vv = sum([
sum([
sum([
Mi_linear(M1)(x11=rr1, x22= rr2, y11=y1,y22=y2,y33=y3) * (z_linear(zz1)(y11=y1,y22=y2,y33=y3) + rho * z_linear(zz2)(y11=y1,y22=y2,y33=y3)) +
alpha * Mi_linear(M2)(x11=rr1, x22= rr2, y11=y1,y22=y2,y33=y3) * (z_linear(zz1)(y11=y1,y22=y2,y33=y3) + rho * z_linear(zz2)(y11=y1,y22=y2,y33=y3)) +
alpha^2 * Mi_linear(M3)(x11=rr1, x22= rr2, y11=y1,y22=y2,y33=y3) * (z_linear(zz1)(y11=y1,y22=y2,y33=y3) + rho * z_linear(zz2)(y11=y1,y22=y2,y33=y3))
for y3 in [0,1]])
for y2 in [0,1]])
for y1 in [0,1]])
vv
17
Round 1
v 11 ′ = ∑ y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } M 1 ~ ( ( r 1 ′ , r 2 ′ ) , ( Y 1 , y 2 , y 3 ) ) ⋅ ( z ~ 1 ′ ( ( Y 1 , y 2 , y 3 ) ) + ρ ⋅ z ~ 2 ′ ( ( Y 1 , y 2 , y 3 ) ) ) + α ⋅ ∑ y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } M 2 ~ ( ( r 1 ′ , r 2 ′ ) , ( Y 1 , y 2 , y 3 ) ) ⋅ ( z ~ 1 ′ ( ( Y 1 , y 2 , y 3 ) ) + ρ ⋅ z ~ 2 ′ ( ( Y 1 , y 2 , y 3 ) ) ) + α 2 ⋅ ∑ y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } M 3 ~ ( ( r 1 ′ , r 2 ′ ) , ( Y 1 , y 2 , y 3 ) ) ⋅ ( z ~ 1 ′ ( ( Y 1 , y 2 , y 3 ) ) + ρ ⋅ z ~ 2 ′ ( ( Y 1 , y 2 , y 3 ) ) ) \begin{aligned}
v'_{11} &= \sum_{y_2 \in \{0,1\}} \sum_{y_3 \in \{0,1\}} \widetilde{M_1}((r'_1, r'_2), (Y_1, y_2, y_3)) \cdot (\widetilde{z}'_1((Y_1, y_2, y_3)) + \rho \cdot \widetilde{z}'_2((Y_1, y_2, y_3))) \\
&+ \alpha \cdot \sum_{y_2 \in \{0,1\}} \sum_{y_3 \in \{0,1\}} \widetilde{M_2}((r'_1, r'_2), (Y_1, y_2, y_3)) \cdot (\widetilde{z}'_1((Y_1, y_2, y_3)) + \rho \cdot \widetilde{z}'_2((Y_1, y_2, y_3))) \\
&+ \alpha^2 \cdot \sum_{y_2 \in \{0,1\}} \sum_{y_3 \in \{0,1\}} \widetilde{M_3}((r'_1, r'_2), (Y_1, y_2, y_3)) \cdot (\widetilde{z}'_1((Y_1, y_2, y_3)) + \rho \cdot \widetilde{z}'_2((Y_1, y_2, y_3)))
\end{aligned}v 11 ′ = y 2 ∈ { 0 , 1 } ∑ y 3 ∈ { 0 , 1 } ∑ M 1 (( r 1 ′ , r 2 ′ ) , ( Y 1 , y 2 , y 3 )) ⋅ ( z 1 ′ (( Y 1 , y 2 , y 3