
Intent Machines (in 15 min)

Christopher Goes
Inaugural Intents Day!



Goals of an intent formalism

1. Capture commonalities of intent systems
2. Capture structure, not implementation detail
3. Aid in analysis of:

a. Similarities and differences
b. Conditions for and behavior of composition
c. Relationship to other concepts (e.g. MEV)



Candidate formalism



Candidate: “Intent machine”

1. Fix a state type T.
2. An intent is a function of type T -> T -> O | 1.
3. An intent machine is a potentially non-deterministic 

function of type (T, Set I) -> (T, Set I)
a. First tuple: prior state and candidate intents
b. Second tuple: posterior state and processed intents

4. Key property: intent adherence
a. forall i in processed . i prior posterior = 1



Intent machines: decomposition

Without loss of generality, this function can be decomposed 
into two steps:

1. Enumeration: computing a set of (candidate state, 
processed) tuples which satisfy intent adherence.

2. Selection: choosing one of the tuples to return.



Intent machines: constraints

This function may additionally constrain which state 
transitions are considered to be valid. This can be modelled 
as a “system intent” which must always be satisfied.

Examples:

- Interior EVM state transition function satisfied
- Resource linearity & logics satisfied



Intent machines: selection

Selection picks one pair from the set of valid options.

choose :: Set (T, Set I) -> (T, Set I)

All of the interesting structure lies here.



Selection functions



Example selection functions I

➔ “Pure chaos”
◆ Select a valid return pair at random

➔ “Pareto-efficient chaos”
◆ Select the return pair which satisfies the most intents; break ties 

with randomness.

➔ “Utility maximization”
◆ Select the return pair which maximizes some scalar function T -> Nat.



Example selection functions II

➔ “Profit maximization”
◆ Utility maximization with a utility function that calculates the 

balance of some specific token owned by the operator’s address.

➔ “Welfare maximization”
◆ Utility maximization with a utility function set to the welfare 

function of some community.

➔ “Expected utility maximization”
◆ Select the return pair which maximizes expected future utility, given 

some probability distribution over future intents conditional on the 
posterior state.



Composition: selection functions

➔ “Optimistic preferred”
◆ If both selection functions agree, return that, else use the solution 

chosen by one of them.

➔ “Optimistic random”
◆ If both selection functions agree, return that, else choose randomly 

between options the Pareto frontier.

➔ “Weighted welfare”
◆ (works for scalar utility functions only)
◆ Select according to some weighted sum.



Distribution



Analysis: distribution

➔ Anoma (& many others) effectively implement a distributed 
intent machine
◆ Different parties performing enumeration and selection.
◆ Consensus to agree on which new state will be chosen.

➔ Everything is distributed!
◆ State
◆ Computation
◆ Enumeration
◆ Selection
◆ Verification



Analysis: composition under distribution

➔ This distributed intent machine is composed of … other 
intent machines (with different select functions)
◆ e.g. profit-maximizing operators

➔ One could understand cryptoeconomic mechanism design as 
trying to set incentives to provide a particular composed 
selection function.

➔ MEV & co. enter here
➔ (needs more work)



Survey questions



Questions for the audience

1. What would your goals for an intent formalism be?
2. Do you think this option makes sense?

a. Which parts are clear / unclear?

3. Are there other compelling candidate formalisms?

Thanks!


