Isaac Sheff

Ellax.dev

Aleksandr Karbyshev

Tobias Heindel

Shared P2P Layer

Users Intents

Post-ordering execution

Solvers

Transactions

Executable

State Machine

/ Blockchain

Post-ordering execution

- Shared P2P Layer
- Post-ordering execution

HETEROGENEOUS TRUST

- Many Instances
- Shared Validators
 - Software for multiple instances
 - Add chains on demand
 - Reduce redundancy

COMPONENTS

Shared P2P

Layer

-P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

https://arxiv.org/abs/2306.16153

Stefanie Roos
TU Delft

- https://arxiv.org/abs/2306.16153
- Multiple Independent Overlay Networks (Domains)

- https://arxiv.org/abs/2306.16153
- Multiple Independent Overlay Networks (Domains)
 - Performance of a small overlay

- https://arxiv.org/abs/2306.16153
- Multiple Independent Overlay Networks (Domains)
 - Performance of a small overlay
- Inter-Domain Routing

- https://arxiv.org/abs/2306.16153
- Multiple Independent Overlay Networks (Domains)
 - Performance of a small overlay
- Inter-Domain Routing
- Cross-domain attack response
 - Security of a large overlay

COMPONENTS

Shared P2P Layer P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

COMPONENTS

MEMPOOL

- Receives from clients / solvers
- Stores transactions
- Narwhal

Shared P2P

Layer

CONSENSUS

EXECUTION

-P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

Cross-chain transactions

COMPONENTS

MEMPOOL

- Receives from clients / solvers
- Stores transactions
- Narwhal

CONSENSUS

- Orders transactions
- Heterogeneous Paxos

EXECUTION

-P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

Shared P2P Layer

Cross-chain transactions

Post-ordering execution

COMPONENTS

MEMPOOL

- Receives from clients / solvers
- Stores transactions
- Narwhal

CONSENSUS

- Orders transactions
- Heterogeneous Paxos

EXECUTION

- State machine
- Client reads
- Concurrency

-P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

Shared P2P Layer

Cross-chain transactions

COMPONENTS

MEMPOOL

- Receives from clients / solvers
- Stores transactions
- Narwhal

CONSENSUS

- Orders transactions
- Heterogeneous Paxos

Post-ordering execution

EXECUTION

- State machine
- Client reads
- Concurrency

Shared P2P Layer

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

ATOMIC COMMITMENT ACROSS CHAINS

- Multiple chains
- Different validator machines

ATOMIC COMMITMENT ACROSS CHAINS

- Multiple chains
- Different validator machines
- ▶ IBC (ibcprotocol.org)

TRAIN & HOTEL PROBLEM

- Multiple chains
- Different validator machines
- ▶ IBC (ibcprotocol.org)
- Atomic commitment
 - Both or Neither:
 - Hotel Room
 - Train Ticket

TRAIN & HOTEL PROBLEM

- Multiple chains
- Different validator machines
- ▶ IBC (<u>ibcprotocol.org</u>)
- Atomic commitment
 - Both or Neither:
 - Hotel Room
 - Train Ticket
- Shared Sequencers? (Espresso)

TRAIN & HOTEL PROBLEM

- Multiple chains
- Different validator machines
- ▶ IBC (<u>ibcprotocol.org</u>)
- Atomic commitment
 - Both or Neither:
 - Hotel Room
 - Train Ticket
- Multi-phase commit

CHIMERA CHAINS

CHIMERA CHAINS

Each chain liveness / integrity of its own consensus

ATOMIC BATCHES

- Each chain liveness / integrity of its own consensus
- Atomic batches of "multi-chain" transactions that commit atomically (ALL or NONE)

ATOMIC BATCHES

- Each chain liveness / integrity of its own consensus
- Atomic batches of "multi-chain" transactions that commit atomically (ALL or NONE)
- Heterogeneous Paxos(OPODIS 2020)

ATOMIC BATCHES

- Each chain liveness / integrity of its own consensus
- Atomic batches of "multi-chain" transactions that commit atomically (ALL or NONE)
- Heterogeneous Paxos(OPODIS 2020)
 - Atomicity guaranteed under certain conditions

TRUST ASSUMPTIONS

Safety derives from validators common to multiple chains

High validator overlap in practice

Over Chimera Chain

- Over Chimera Chain
- Instances of constituent chain state machines

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions
 - Shared Validity (Umbra)

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions
 - Communication within bundles

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions
 - Communication within bundles

Inter-transaction communication

CHIMERA CHAINS

- Each chain liveness / integrity of its own consensus
- Atomic batches of "multi-chain" transactions that commit atomically (ALL or NONE)
- Heterogeneous Paxos(OPODIS 2020)
 - Atomicity guaranteed under certain conditions

Cross-chain transactions

COMPONENTS

MEMPOOL

- Receives from clients / solvers
- Stores transactions
- Narwhal

CONSENSUS

- Orders transactions
- Heterogeneous Paxos

Post-ordering execution

EXECUTION

- State machine
- Client reads
- Concurrency

-P2P

- Communication / Multicast
- ▶ P2P Overlay Domains with Sovereignty (PODS)

Shared P2P Layer

- Shared P2P Layer

CONCLUSIONS

PODS:

https://arxiv.org/abs/2306.16153

- Full spec proposal coming soon!
- github.com/anoma/typhon

CONCLUSIONS

, which supports CHIMERA CHAINS

- New heterogeneous protocols
- Communication language within atomic bundles
- Share Components
- Practical problems encountered

PODS:

https://arxiv.org/abs/2306.16153

- Full spec proposal coming soon!
- github.com/anoma/typhon

TYPHON OVERVIEW

BONUS SLIDES

TYPHON OVERVIEW

2 PHASE

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Each chain locks

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Each chain locks
 - And stays locked

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Each chain locks
 - And stays locked
 - Until both chains are locked

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Each chain locks
 - And stays locked
 - Until both chains are locked
 - Verifies other chains have locked

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Each chain locks
 - And stays locked
 - Until both chains are locked
 - Verifies other chains have locked
 - Unlocks

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Liveness

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Liveness
 - Multiple Rounds

- Atomic commitment
 - Both or Neither: Room & Ticket
- Multi-Phase Commit
 - Liveness
 - Multiple Rounds
 - Free Option

TYPHON OVERVIEW

LOSS OF ATOMICITY

TRUST ASSUMPTIONS

Safety derives from validators common to multiple chains

High validator overlap in practice

Each chain liveness / integrity of its own consensus

- Each chain liveness / integrity of its own consensus
- Red Chain remains consistent

- Each chain liveness / integrity
 of its own consensus
- Red Chain remains consistent
- Blue Chain remains consistent

- Each chain liveness / integrity of its own consensus
- Red Chain remains consistent
- Blue Chain remains consistent

- Each chain liveness / integrity of its own consensus
- Red Chain remains consistent
- Blue Chain remains consistent

- Validators
 - Receive transactions from clients
 - Replicate and store

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

NARWHAL MEMPOOL [DANZENIS ET. AL., EUROSYS 2022]

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

NARWHAL MEMPOOL [DANZENIS ET. AL., EUROSYS 2022]

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

NARWHAL MEMPOOL [DANZENIS ET. AL., EUROSYS 2022]

- Validators
 - Receive transactions from clients
 - Replicate and store
- Many workers per validator
- DAG of Mempool blocks
 - Certificates of Availability
 - Consensus chooses total order

Available

COMET

- The annual annua
- State Machine
 - Sub-state with well-defined permissions
- High availability

Serialized execution

- High Throughput
- High Integrity

Block proposal bottleneck

"Everyone" agrees

Cross-chain transactions

VOCABULARY

State Machine Replication	Blockchain
BFT Replicated State Machine System	Chain
State Machine	State Machine
State Transition / Transaction	Transaction
Log	Ledger
Object	Smart Contract
Batch of Transactions	Block
Replica / Learner	Full Node
Acceptor	Validator / Voter / Miner
Slot / Instance of Consensus	Height

ATOMIC COMMITMENT ACROSS CHAINS

- 2 chains (with finality)
 - Different maintainers

ATOMIC COMMITMENT ACROSS CHAINS

- 2 chains (with finality)
 - Different maintainers
- One block for both chains

A chain for each possible consensus

A chain for each possible consensus

A chain for each possible consensus

A chain for each possible consensus

On-demand

- A chain for each possible consensus
 - On-demand
- Inter-Chain Communication

- A chain for each possible consensus
 - On-demand
- Inter-Chain Communication

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- ▶ Each chain liveness / integrity of its own quorums
- Inter-chain transaction atomicity when quorum intersections all contain a safe node

- A chain for each possible consensus
 - On-demand
- Inter-Chain Communication

▶ IBC? [ibcprotocol.org]

- ▶ IBC? [ibcprotocol.org]
- Do we need Proofs?

- ▶ IBC? [ibcprotocol.org]
- Do we need Proofs?
- Synchrony (in blocks)?

Over Chimera Chain

- Over Chimera Chain
- Instances of constituent chain state machines

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions

- Over Chimera Chain
- Instances of constituent chain state machines
- Transactions:
 - Atomic bundles of constituent chain transactions
 - Communication within bundles

CHALLENGES 126

PROGRAMMING MODEL

Locking State

CHALLENGES 127

- Locking State
 - Locks held by chimera chain

- Locking State
 - Locks held by chimera chain

- Locking State
 - Locks held by chimera chain

- Locking State
 - Locks held by chimera chain

- Locking State
 - Locks held by chimera chain
 - Maintains liveness

- Locking State
 - Locks held by chimera chain
 - Maintains liveness
 - Re-usable

- Locking State
 - Locks held by chimera chain
 - Maintains liveness
 - Re-usable
- Moving Objects
 - Between state machines with same quorums
 - Synchronously (in blocks)

PRACTICAL QUESTIONS

- How to start an on-demand chain?
- Partially synchronous consensus on demand
- Gossiping and assembling atomic transaction bundles

CHIMERA CHAINS: MULTI-BLOCKCHAIN ATOMIC TRANSACTIONS

- No loss of liveness or integrity
- No global ordering
- No global integrity mechanism

